In trigonometry, the basic relationship between the sine and the cosine is known as the Pythagorean identity:
where cos2 θ means (cos(θ))2 and sin2 θ means (sin(θ))2.
Dividing the Pythagorean identity by either cos2 θ or sin2 θ yields two other identities:
Angle-Sum and -Difference Identities
sin(α + β) = sin(α) cos(β) + cos(α) sin(β)
sin(α – β) = sin(α) cos(β) – cos(α) sin(β)
cos(α + β) = cos(α) cos(β) – sin(α) sin(β)
cos(α – β) = cos(α) cos(β) + sin(α) sin(β)
-
Using these identities, it is possible to express any trigonometric function in terms of any other (up to a plus or minus sign):